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Abstract

This paper refers to some basic definitions of partial
discharges (PD), a most important phenomenon taking place in
insulating materials under high voltages. There is a brief
description of PD modeling as well as a description of the
means of detecting and registering such phenomena. This pa-
per concentrates mainly on the PD phenomena taking place in
enclosed cavities in solid insulation. Some directions of
future research are discussed.
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Introduction
Partial discharge (PD) is

the name given to the elec-
trical  discharge,  which  in-
volves only a portion of the
dielectric between two elec-
trodes  and  which  does  not
bridge the electrodes [1]. PD
may  happen  in  a  cavity  (or
void) in a solid insulation
(and such PD are usually re-

ferred to as internal PD), on
a surface or around a sharp
point  subjected  to  a  high
voltage. Internal PD are ex-
tremely harmful to solid in-
sulating materials and start
appearing  when  a  cavity  is
subjected  to  an  AC  stress-
greater  than  its  breakdown
value.  They  occur  at  each
half-cycle of the applied si-

MONDAY 30 SEPTEMBER 2024 v1—5 FUNKTECHNIKPLUS # JOURNAL



M. G. DANIKAS, R. SARATHI

nusoidal voltage [2]. PD are
intimately  linked  with  the
notion of PD energy, as was
explained in [3], where the
PD energy (w) of a single PD
is given as

W = 0.7 q Vi (1)

where, q is the apparent char-
ge of the PD and Vi, the dis-
charge inception voltage.

PD  develop  in  inclusions
is a solid dielectric. Such
inclusions have a lower di-
electric  strength  than  that
of the surrounding material.
With rising applied voltage,
the voltage at which PD start
occurring in an inclusion is
called  inception  voltage.
When the voltage is decreas-
ing somehow, PD stop occur-
ring. That voltage is called
extinction  voltage  [4].  It
must be emphasized that the
quantities ″inception voltage″
and ″extinction voltage″ de-
pend  on  the  sensitivity  of
the detecting apparatus avail-
able [5 - 8]. It must also be
pointed  out  that,  reference
[4] written by a most distin-
guished  scientist,  restricts
the definitions of ″inception
voltage″ and extinction volt-
age″ to AC conditions. Inclu-
sions in a so-lid insulation
can  be  gas-filled  cavities
found  in  extruded  plastics,
lapped impregnated paper and
cast re-sins, cavities filled
with oil (as in layers and in

butt gaps of oil impregnated
paper insulation) or may con-
sist of various foreign par-
ticles  (such  as  textile
fibers or dirt). The problem
of PD and their injurious ef-
fects on so-lid  insulation
has  been  studied for many
years [7, 9, 10 - 12]. This
paper will concentrate on the
PD  in  enclosed  cavities  in
solid  insulation.  Some  as-
pects of PD will be reviewed.
Some of the remaining prob-
lems in conjunction to PD in
cavities will be discussed.

PD modeling
The most popular and wi-

dely used model for the de-
scription of the behavior of
PD  in  enclosed  cavities  is
the well known a-b-c model or
capacitance  model  [13,  14].
The model represents the en-
closed cavity as a capacitor
(Cc), with another capacitor
the adjacent insulation (Cb)
and yet another capacitor the
rest of the healthy insula-
tion (Ca). In case of an ap-
plied AC voltage Va to the in-
sulation sample, another volt-
age Vc appears in the cavity,
with  these  voltages  related
with the following equation

Vc = Va [Cb / (Cb + Cc)] (2)

According to appropriate ana-
lysis  [3],  it  follows  that
the apparent charge (q) of a
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discharge in a cavity can be
expressed as

q = Cb ΔVc (3)

with ΔVc the voltage drop in
the cavity during the PD.

Another model – based on
the electromagnetic theory –
is  the  model  proposed  in
[15], where the charge (q) in-
duced on the measuring elec-
trode by the PD in a cavity
of geometric factor (k) and
having a volume (Ω), with the
inception electric field for
streamer inception (Ei) and a
limiting  electric  field  for
ionization (El), the relative
permittivity of the surround-
ing insulation (εr) with (ε0)
the permittivity of the free
space, and  ∇λ0 the function
giving the ratio of the elec-
tric field at the position of
a cavity (in the absence of
the  cavity)  to  the  voltage
between  the  electrodes,  is
given in the following equa-
tion

q = k Ω εr ε0 (Ei - El) ∇ λ0 (4)

This model was based on the
streamer criterion and it was
proved  adequate  for  initial
experimental  conditions.  The
criticism  which  was  leveled
by  Pedersen  and  colleagues
against the a-b-c model was
that an enclosed cavity can-
not be represented as a capa-
citance  since  a  capacitance

by definition requires a me-
tallic surface facing a me-
tallic  surface.  In  a  paper
[16], some criticism was le-
veled against Pedersen’s mo-
del, namely that whereas pu-
blication  [15]  takes  into
account  the  occurrence  of
sustained discharges, it does
not  take  into  account  the
eventuality  of  non-sustained
discharges. Non-sustained dis-
charges  may  well  not  only
lead to a redistribution of
charges inside a cavity, but
they may also have an effect
on the lifetime of the insu-
lation. Later on, there was
additional  criticism  of  Pe-
dersen’s model in a number of
publications [17 – 19].

Another model – which pre-
ceded Pedersen’s model – was
proposed  in  [20].  Although
the models of [15] and [20]
present  some  similarities,
they differ in that the lat-
ter  is  based  on  Townsend’s
criterion.  The  equation  ex-
pressing the apparent charge
q of a PD taking place in a
cavity is given in Eq. (5)

q = εr ε0 Ez γ V / la (5)

where, εr, ε0 as in Eq. (4)
above, Ez the electric field
given from Paschen’s curve, γ
a  parameter  related  to  the
electrode arrangement, V the
cavity volume and la a geome-
trical  factor  depending  on
the  cavity  dimensions,  i.e.
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on the ration a/b if the ca-
vity is ellipsoidal. The mo-
del proposed in [20] seems to
be more appropriate for ra-
ther aging conditions whereas
the model of reference [15]
seems to be more suitable for
initial  experimental  condi-
tions.

More recently, a detailed
account  on  PD  modeling  was
reported in [21], where the
authors analyzed – apart from
the capacitance model and Pe-
dersen’s  model  -  the  pros-
and cons - of other models,
such as Niemeyer’s model, the
plasma model and the Finite
Element  Method  (FEM)  model.
It  is  a  general  truth  that
modeling  cannot  fully  de-
scribe  all  the  PD  workings
occurring in a cavity. There-
fore, the above mentioned mo-
dels have their own advanta-
ges  and  limitations.  Nie-
meyer’s  model,  for  example,
correctly proposes cavity sur-
face emission and volume ion-
ization but it assumes that
the cavity internal field re-
mains constant and the dis-
charge process takes place in
the entire cavity. The plasma
model  gives  details  of  the
physics of the discharge but
it cannot analyze multiple PD
activities  (e.g.,  in  case
there  are  multiple  cavities
in  an  insulation).  The  FEM
model may well give accurate
distributions of the electric
fields but in case of complex

physical activities may need
extensive  computing  facili-
ties [21].

PD in cavities
Mason  [22]  testing  with

plane discs from clean poly-
ethylene with small cylindri-
cal cavities and using uni-
form  electrode  arrangement,
calculated  that  about  10-15
cm3 of polyethylene is eroded
by  each  PD  having  a  10  pC
magnitude.  The  same  resear-
cher reported that deteriora-
tion  of  the  dielectric  in-
creased with raising the ap-
plied  voltage  above  the  PD
inception  level.  Among  the
main  factors  affecting  the
rate of deterioration of an
insulating  material  are  the
ratio of the applied voltage
to the PD inception voltage,
the magnitude and energy of
the PD, the waveform and fre-
quency of the applied volt-
age, the resistance of the ma-
terial both to PD erosion and
to chemical attack by bypro-
ducts generated by the dis-
charge and finally the elec-
trical  and  chemical  charac-
teristics of the surrounding
medium  [23].  The  energy  of
the  discharges  affects  the
local temperature rise at the
point of impact of the PD and
subsequently the value of the
attained  intrinsic  strength.
(it must be noted that the no-
tion of "intrinsic strength",

FUNKTECHNIKPLUS # JOURNAL v1—8 ISSUE 35 — YEAR 12



PARTIAL DISCHARGES IN SOLID INSULATION CAVITIES: BASIC CONCEPTS... 
DEFINITIONS AND SOME THOUGHTS FOR FURTHER RESEARCH
although still employed when
referred to very localized phe-
nomena, is not generally used
[24]). 

Earlier work [25], inves-
tigating the behavior of dis-
charges  in  air  gaps  facing
solid  insulation,  indicated
that the increase of PD mag-
nitude with increasing volt-
age was due to a continuous
recombination and neutraliza-
tion of deposited surface char-
ges which reduce the shield-
ing effect. Rogers [26] re-
marked that cavities adjacent
to electrodes cause more dam-
age than cavities inside the
main body of the solid insu-
lation,  something  that  was
also noted before [22]. More-
over, PD in cavities with a
large  diameter/depth  ratio
cannot extinguish as in cavi-
ties with a small diameter/
depth ratio. The former type
of cavities is likely to have
the more injurious effect on
the insulation. Such observa-
tions were also made by Nos-
seir and co-workers [27], whe-
reas decades later, the ob-
servations by Rogers were also
confirmed in [28].

Another  researcher  [29],
many decades ago, tested two
types of insulating specimens,
namely one with artificial ca-
vities and another with natu-
ral  cavities  and  he  found
that the inception voltage of
natural cavities was two to
four times the calculated in-

ception voltage, assuming the
field was uniform in the cav-
ity. Echoing such work, Kreu-
ger  [30]  observed  that  PD
magnitude increases with cav-
ity area, with the number of
PD per unit time increasing
proportionally with frequency.

Quite early, particular at-
tention was paid to the in-
terconnection between insula-
tion  damage  and  chemical
changes. Thus, it was repor-
ted in [31] that on non-uni-
form electrode system and po-
lyethylene samples, the main
chemical changes occurring –
by the activity of PD – are
crosslinking, increase in un-
saturation and hydrogen evo-
lution. The rate of chemical
change depends on the total
PD energy and the concentra-
tion of the end products. The
total volume of hydrogen evo-
lution V (in ml) in a system
at a time t (in sec) was em-
pirically given in Eq. (6)

V = √2 kt (6)

with k the hydrogen evolution
coefficient, which is direct-
ly proportional to the total
PD energy per cycle. In the
same publication it was poin-
ted out that weakly conduct-
ing films play a significant
role in retarding the ultima-
te failure of the solid insu-
lation, agreeing in this re-
spect with Kreuger [30, 32].
Somehow coupled with the pre-
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viously mentioned work is a
paper published in 1965, whe-
re it was shown that the PD
rate  rises  almost  linearly
with the applied voltage ir-
respective of the gap setting
and the vapor pressure in a
spark gap [33].

The  question  of  PD  and
their relation to energy as
well as to insulation damage
is  one  of  the  most  crucial
ones. Megahed and co-workers
[34]  thought  preferable  to
measure continuously both PD
magnitudes and repetition ra-
tes in order to correlate PD
damage with PD activity ra-
ther than measure either the
maximum PD magnitude or the
total PD energy. Later [35],
Megahed  confirmed  the  above
conclusions  studying  the  PD
repetition rates in cavities
in epoxy resin, polyethylene
and mica under AC conditions.
At  about  the  same  period,
other researchers working on
internal PD behavior in poly-
ethylene with artificial cav-
ities, reported that PD gen-
erally decrease in magnitude
and repetition rate with time
and that absorbed water can
greatly influence the pattern
of discharges [36]. The de-
crease of repetition rate of
PD with time occurs because
of a voltage decrease on the
side wall due to the decline
of the side wall resistance
in  the  cylindrical  cavity.
The apparent charge of maxi-

mum PD (qa) in a cylindrical
cavity is given by Eq. (7)

qa = (ε0 ε VGO s) / (D – d) (7)

with ε0 the dielectric con-
stant of vacuum, ε the die-
lectric constant of the solid
material, D the thickness of
the  specimen,  d  the  cavity
depth, s the area of the cav-
ity  and  VGO the  inception
voltage  of  the  cavity.  The
diminution of qa with time is
due to the narrowing of the
discharge area by the deve-
lopment of low resistance to
inner  top  and  bottom  sur-
faces.  Results  published  in
[37] at about the same period
showed that the impulse in-
ception stress increases with
decreasing cavity diameter at
constant cavity depth as well
as with decreasing depth at
constant cavity diameter. Such
data on the effect of cavity
dimensions on the PD activity
and on inception voltage were
confirmed in more recent re-
search [38 – 40].

Okamoto and co-workers [41]
pointed out that the nature
of internal PD is greatly af-
fected by the assembly of the
electrode system and the ad-
hesion of films. This means
that the preparation procedu-
re  plays  a  pivotal  role  on
the experimental results one
can get. Furthermore, they re-
ported that internal dischar-
ges become unstable as time
goes on and this in turn may
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result in very long lifetimes.
Such conclusions were confir-
med later in [42, 43].

Selvakumar  and  Nema  [44]
found that the PD inception
voltage depends on both the
pressure within the cavity and
on the cavity diameter, with
the PD inception voltage de-
creasing at low pressures. PD
inception  voltage  also  de-
creases approaching a minimal
value as the diameter becomes
larger. The extinction volt-
age, on the other hand, de-
pends  on  the  conditions  of
charges trapped on the sur-
face of the insulation. They
reported that, for consistent
measurements  of  quantities
such as inception voltage, of
stress across the cavity and
of  extinction  voltage,  long
periods of stressing are rec-
ommended and not overvoltages
since the latter may damage
the insulation. The effect of
cavity pressure on PD behav-
ior  was  confirmed  the  same
year by other researchers [45].
Important work done in [27],
indicated  that  a  hysteresis
effect exists between incep-
tion and extinction voltage,
i.e.  for  the  same  applied
voltage V, the PD magnitude
recorded  was  less  when  the
voltage  was  being  decreased
than when the applied voltage
was being increased. The hys-
teresis effect was more pro-
nounced for deeper cavities.
The  authors  attributed  this

to  the  slower  rate  of  dis-
charge leakage in case of dee-
per cavities. The hysteresis
effect – as noted in [27] –
was  studied  and  used  many
years later as an effective
diagnostic tool for electri-
cal machine insulation ageing
and degradation [46 – 48].

A direct relationship be-
tween  PD  intensity  and  the
rate  at  which  deterioration
takes  place  in  an  internal
cavity was observed by Reyn-
ders  [49],  who  worked  with
low  density  polyethylene
(LDPE). His observations were
confirmed  in  another  paper
published a few years later
[50]. Reynders noted a phe-
nomenon observed also by oth-
ers  before,  namely  that  PD
initially of large magnitude
decrease  with  time.  Such  a
behavior may be attributed to
the diminishing of the cavity
area associated with each PD
with time and this can happen
if the PD occur between sites
where  degradation  products
accumulate.  As  the  degrada-
tion products spread over the
cavity surface, smaller areas
between them are available to
PD [51]. Regarding the degra-
dation of LDPE, two degrada-
tive processes were observed:

(a) crosslinking of polyethy-
lene,  which  may  be  due  to
ultraviolet  radiation  and
electrons and this is evident
by hydrogen evolution, and
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(b) erosion of polyethylene,
which may be due to ion bom-
bardment and the evolution of
organic gases, such as carbon
monoxide, methane and carbon
dioxide [52]. 

With respect to process (a),
publication [52] did not dif-
fer from the explanation of
[31].

Researching the notion of
inception  voltage,  Golinski
and  co-workers  [53]  studied
PD  activity  in  cylindrical
cavities  enclosed  in  epoxy
resin specimens with various
electrode geometries. They ob-
served that the effect of po-
larity  is  distinct  only  in
the region where V = Vvi (V
being the applied voltage and
Vvi the inception voltage for
the cavity). At V = (3 or 4)
Vvi the  effect  of  polarity
almost disappeared. They spe-
culated that at higher volt-
age  the  important  secondary
phenomena  (photoionization,
dissociation of the negative
ions formed by the preceding
PD) in gas breakdown origi-
nate  from  the  gas  and  not
from the metal electrodes.

Garcia and Fallou [54] pro-
posed discharge energy as a
reliable and useful tool in
evaluating  the  relationship
between  loss  of  weight  and
dissipated  power  since  the
apparent charge reflects just
the voltage pulse induced at
the terminals of the test ob-

ject providing thus little in-
formation concerning the de-
teriorating effect of the PD.
The energy delivered to the
test object is expressed ac-
cording to these authors as

ET = Σ Ui Qi (8)

where, ET is the energy sup-
plied  by  the  source  over  a
period T during which N dis-
charges have taken place, Qi
and Ui being respectively ap-
parent charge of the PD and
Ui the instantaneous value of
applied voltage when the PD
takes place. The conclusions
of  [54]  were  not  different
from those reported in [55,
56]. The notion of discharge
energy was adopted by a va-
riety  of  researchers  later,
especially with the advent of
Pulse Height Analyzers (PHA)
and  Phase  Resolved  Partial
Discharges  Analysis  (PRPDA)
[57 - 65]. The latter two tech-
niques  also  greatly  contri-
buted in observing various PD
patterns as was reported and
analyzed in [21, 66] as well
as in analyzing in detail the
cavity physics and chemistry
when this is under PD acti-
vity. Furthermore, relatively
recent  studied  successfully
exploited  PHA  and  PRPDA  in
order to relate energy pat-
terns of delaminations, slot
and cavities in high voltage
rotating  machines  with  tanδ
measurements [67].
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Ideas as to the importance
of PD energy in relation to
insulation  damage  were  ex-
pressed quite early. The com-
plexities of PD energy vs. PD
magnitude were very early no-
ted  by  Mole  [68],  who  sug-
gested that the energy dissi-
pation of an individual dis-
charge in a cavity appeared
to be more important than the
PD magnitude. In the same pa-
per  it  was  pointed  out  the
significance of the cumulati-
ve  energy  dissipation  in  a
cavity (which was determined
by the individual energy dis-
sipation together with the PD
repetition frequency in a par-
ticular cavity). Building on
earlier  ideas  and  concepts,
Bartnikas  [2]  expressed  the
energy dissipated in each dis-
charge as 

ΔW = CV (ΔV)2 / 2 (9)

where, CV the cavity capaci-
tance and ΔV the voltage drop
in the cavity during a dis-
charge. The same author cor-
rectly pointed out the great
significance of the PD energy
because of its direct relation-
ship to the degradation of an
insulation  subjected  to  PD.
Starr [69] reported that the
spatial concentration of the
PD energy is very important,
since  in  some  cases,  dis-
charges alter the material on
which they impinge rendering
it  partially  conductive  and
consequently removing the elec-

trical stress from the area
where the discharges firstly
occurred. This may well cause
the discharge mechanism pro-
cess to cease or start some-
where else. A consequence of
the above is that a discharge
energy / material damage rela-
tionship may be different from
what is expected.

The question as to how we
can relate insulation damage
with PD parameters is one of
the crucial problems. Insula-
tion damage, depending on the
material and the experimental
and/or the service conditions,
may manifest itself in vari-
ous  forms,  e.g.  discolored
areas,  chemical  alterations,
solid by-products, liquid by-
products, gaseous by-products
etc.  It  was  reported  that
even very small PD may cause
some  insulation  damage,  and
consequently affect the life-
time of an insulation [70].
This statement is at variance
with earlier findings of [30],
where  it  was  reported  that
″...very small discharges may
not influence the lifetime of
the  insulant″.  In  [70]  as
well as in more recent publi-
cations [71 - 75], it was in-
dicated that even very small
PD may have a cumulative ef-
fect and be harmful since in
the mid- and long- term may
produce  more  carbonization,
disruption of the polymer mo-
lecules and release of gaseous
by-products.
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The failure of earlier re-
searchers  [76]  to  obtain  a
more explicit quantitative re-
lationship between insulation
damage and PD parameters was
remedied in more recent years
with the advent of powerful
tools of PD analysis, such as
the  PHA  and  the  PRPDA  men-
tioned above as well as the
Pulse-Sequence Analysis (PSA)
[77 - 80]. Needless to say that
such techniques also help with
the identification of the ty-
pes of the defects in an in-
sulation  and  also  with  the
clarification of the kind of
PD mechanisms involved [81 -
84].

Some further thoughts on
partial discharges
In this paper, an effort

was made to present a blend
of older and more recent re-
search regarding partial dis-
charges in enclosed cavities.
It is evident that scientific
research has a continuity and
it is always very interesting
to see how recent techniques
may  tackle  older  problems.
Although there was not a dra-
matic change in basic PD de-
finitions - albeit sometimes
of efforts in introducing ne-
ologisms [85, 86] -, the de-
velopment of PD analyzers and
related  detecting  techniques
emphasized the need of defin-
ing in greater detail what is

inception voltage and what is
extinction voltage. With the
passing  of  the  years,  the
refinement  of  detecting
apparatus and the advent of
the  fast  digitizers,  more
attention – and rightly so -
was  paid  to  the  fast
measurements of PD [87, 88].
The latter may supply useful
information  as  to  the  PD
mechanism  inside  a  cavity,
whereas  the  techniques  PHA
and  PRPDA,  mentioned  above
[57 - 65], are an excellent
tool  for  monitoring  the  PD
cavity  development  and
consequently  the  insulation
behavior in the mid- and the
long-  term.  Some  criticism
against  the  PHA  and  PRPDA
techniques  was  leveled
recently,  by  pointing  out
that the former two methods
are sometimes susceptible to
losing  useful  information
when multiple PD sources are
in  action  [89].  Possible
future research may enlighten
further the pros- and cons-
of  the  various  diagnostic
techniques.

Regarding the modeling of
PD in a cavity, discussions
still  go  one  regarding  the
preponderance  of  Pedersen’s
model  [15]  w.r.t.  the  more
classical  capacitance  model
[13,  14].  The  issue  is  not
yet settled, as some recent
publications  indicate  [17  -
19, 90, 91].
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Conclusion
In the context of the pre-

sent paper, some aspects of
partial discharges in enclo-
sed cavities have been par-
tially  reviewed.  Important
issues, such as inception and
extinction  voltages,  PD  en-

ergy and its relation to in-
sulation  damage,  have  been
discussed.  The  interconnec-
tion  between  PD  energy  and
what can be taken as ″insula-
tion damage″ is still one of
the vital subjects for fur-
ther research.
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